Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.12.07.570670

ABSTRACT

Coronavirus disease 2019 (COVID-19) and associated severity has been linked to uncontrolled inflammation and may be associated with changes in the microbiome of mucosal sites including the gastrointestinal tract and oral cavity. These sites play an important role in host-microbe homeostasis and disruption of epithelial barrier integrity during COVID-19 may potentially lead to exacerbated inflammation and immune dysfunction. Outcomes in COVID-19 are highly disparate, ranging from asymptomatic to fatal, and the impact of microbial dysbiosis on disease severity is unclear. Here, we obtained plasma, rectal swabs, oropharyngeal swabs, and nasal swabs from 86 patients hospitalized with COVID-19 and 12 healthy volunteers. We performed 16S rRNA sequencing to characterize the microbial communities in the mucosal swabs and measured circulating cytokines, markers of gut barrier integrity, and fatty acids in the plasma samples. We compared these plasma concentrations and microbiomes between healthy volunteers and the COVID-19 patients who had survived or unfortunately died by the end of study enrollment, and between severe disease and healthy controls, as well as performed a correlation analysis between plasma variables and bacterial abundances. The rectal swabs of COVID-19 patients had reduced abundances of several commensal bacteria including Faecalibacterium prausnitsii, and an increased abundance of the opportunistic pathogens Eggerthella lenta and Hungatella hathewayi. Furthermore, the oral pathogen Scardovia wiggsiae was more abundant in the oropharyngeal swabs of COVID-19 patients who died. The abundance of both H. hathewayi and S. wiggsiae correlated with circulating inflammatory markers including IL-6, highlighting the possible role of the microbiome in COVID-19 severity, and providing potential therapeutic targets for managing COVID-19.


Subject(s)
COVID-19 , Inflammation , Dysbiosis
2.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.10.14.23296666

ABSTRACT

Wastewater-based epidemiology provides an approach for assessing the prevalence of pathogens such as COVID-19 in a sewer service area. In this study, SARS-CoV-2 RNA was measured serially in 44 wastewater treatment plants of varying service capacities comprising approximately 67% of the population of Minnesota, from September 2020 through December 2022. We employed linear regression models to establish a predictive relationship between the weekly SARS-CoV-2 RNA concentrations in wastewater and clinical case counts. Metrics were assessed under specified transformation and normalization methods which we confirmed by cross-validation averaged across the enrolled treatment plants. We report that the relationship between COVID-19 incidence and SARS-CoV-2 RNA in wastewater may be treatment plant-specific. Toward establishing guidelines for pathogen surveillance, we further studied storage and time-to-analysis for RNA wastewater data and observed large effects of storage temperature, indicating that collection methods may have an important effect on the utility and validity of wastewater data for infectious disease monitoring. Our findings are additive for any large-scale wastewater surveillance program.


Subject(s)
COVID-19 , Communicable Diseases
3.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.08.06.503050

ABSTRACT

The alveolar type II (ATII) pneumocyte has been called the defender of the alveolus because, amongst the cell's many important roles, repair of lung injury is particularly critical. We investigated the extent to which SARS-CoV-2 infection incapacitates the ATII reparative response in fatal COVID-19 pneumonia, and describe massive infection and destruction of ATI and ATII cells. We show that both type I interferon-negative infected ATII and type I-interferon-positive uninfected ATII cells succumb to TNF-induced necroptosis, BTK-induced pyroptosis and a new PANoptotic hybrid form of inflammatory cell death that combines apoptosis, necroptosis and pyroptosis in the same cell. We locate pathway components of these cell death pathways in a PANoptosomal latticework that mediates emptying and disruption of ATII cells and destruction of cells in blood vessels associated with microthrombi. Early antiviral treatment combined with inhibitors of TNF and BTK could preserve ATII cell populations to restore lung function and reduce hyperinflammation from necroptosis, pyroptosis and panoptosis.


Subject(s)
Adenocarcinoma, Bronchiolo-Alveolar , Lung Diseases , Pneumonia , COVID-19
4.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.08.25.21262623

ABSTRACT

Background SARS-CoV-2 viral entry may disrupt angiotensin II (Ang II) homeostasis in part via ACE2 downregulation, potentially contributing to COVID-19 induced lung injury. Preclinical models of viral pneumonias that utilize ACE2 demonstrate Ang II type 1 receptor (AT1R) blockade mitigates lung injury, though observational COVID-19 data addressing the effect of AT1R blockade remain mixed. Methods Multicenter, blinded, placebo-controlled randomized trial of losartan (50 mg PO twice daily for 10 days) versus placebo. Hospitalized patients with COVID-19 and a respiratory sequential organ failure assessment score of at least 1 and not already taking a renin-angiotensin-aldosterone system (RAAS) inhibitor were eligible. The primary outcome was the imputed partial pressure of oxygen to fraction of inspired oxygen (PaO 2 /FiO 2 ) ratio at 7 days. Secondary outcomes included ordinal COVID-19 severity, oxygen, ventilator, and vasopressor-free days, and mortality. Losartan pharmacokinetics (PK) and RAAS components [Ang II, angiotensin-(1–7) (Ang-(1–7)), ACE, ACE2] were measured in a subgroup of participants. Findings From April 2020 - February 2021, 205 participants were randomized, 101 to losartan and 104 to placebo. Compared to placebo, losartan did not significantly affect PaO 2 /FiO 2 ratio at 7 days [difference of -24.8 (95% -55.6 to 6.1; p=0.12)]. Losartan did not improve any secondary clinical outcome, but worsened vasopressor-free days. PK data were consistent with appropriate steady-state concentrations, but we observed no significant effect of losartan on RAAS components. Interpretation Initiation of orally administered losartan to hospitalized patients with COVID-19 and acute lung injury does not improve PaO 2 / FiO 2 ratio at 7 days. These data may have implications for ongoing clinical trials. Trial Registration Losartan for Patients With COVID-19 Requiring Hospitalization ( NCT04312009 ), https://clinicaltrials.gov/ct2/show/NCT04312009


Subject(s)
Lung Injury , Pneumonia, Viral , Acute Lung Injury , COVID-19
5.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.05.22.111237

ABSTRACT

Effective therapies for COVID-19 are urgently needed. Presently there are more than 800 COVID-19 clinical trials globally, many with drug combinations, resulting in an empirical process with an enormous number of possible combinations. To identify the most promising potential therapies, we developed a biophysical model for the SARS-CoV-2 viral cycle and performed a sensitivity analysis for individual model parameters and all possible pairwise parameter changes (162 = 256 possibilities). We found that model-predicted virion production is fairly insensitive to changes in most viral entry, assembly, and release parameters, but highly sensitive to some viral transcription and translation parameters. Furthermore, we found a cooperative benefit to pairwise targeting of transcription and translation, predicting that combined targeting of these processes will be especially effective in inhibiting viral production.Competing Interest StatementThe authors have declared no competing interest.View Full Text


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL